1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
use core::num::{NonZero, Saturating, Wrapping};
use crate::boxed::Box;
#[rustc_specialization_trait]
pub(super) unsafe trait IsZero {
/// Whether this value's representation is all zeros,
/// or can be represented with all zeroes.
fn is_zero(&self) -> bool;
}
macro_rules! impl_is_zero {
($t:ty, $is_zero:expr) => {
unsafe impl IsZero for $t {
#[inline]
fn is_zero(&self) -> bool {
$is_zero(*self)
}
}
};
}
impl_is_zero!(i8, |x| x == 0); // It is needed to impl for arrays and tuples of i8.
impl_is_zero!(i16, |x| x == 0);
impl_is_zero!(i32, |x| x == 0);
impl_is_zero!(i64, |x| x == 0);
impl_is_zero!(i128, |x| x == 0);
impl_is_zero!(isize, |x| x == 0);
impl_is_zero!(u8, |x| x == 0); // It is needed to impl for arrays and tuples of u8.
impl_is_zero!(u16, |x| x == 0);
impl_is_zero!(u32, |x| x == 0);
impl_is_zero!(u64, |x| x == 0);
impl_is_zero!(u128, |x| x == 0);
impl_is_zero!(usize, |x| x == 0);
impl_is_zero!(bool, |x| x == false);
impl_is_zero!(char, |x| x == '\0');
impl_is_zero!(f32, |x: f32| x.to_bits() == 0);
impl_is_zero!(f64, |x: f64| x.to_bits() == 0);
unsafe impl<T> IsZero for *const T {
#[inline]
fn is_zero(&self) -> bool {
(*self).is_null()
}
}
unsafe impl<T> IsZero for *mut T {
#[inline]
fn is_zero(&self) -> bool {
(*self).is_null()
}
}
unsafe impl<T: IsZero, const N: usize> IsZero for [T; N] {
#[inline]
fn is_zero(&self) -> bool {
// Because this is generated as a runtime check, it's not obvious that
// it's worth doing if the array is really long. The threshold here
// is largely arbitrary, but was picked because as of 2022-07-01 LLVM
// fails to const-fold the check in `vec![[1; 32]; n]`
// See https://github.com/rust-lang/rust/pull/97581#issuecomment-1166628022
// Feel free to tweak if you have better evidence.
N <= 16 && self.iter().all(IsZero::is_zero)
}
}
// This is recursive macro.
macro_rules! impl_is_zero_tuples {
// Stopper
() => {
// No use for implementing for empty tuple because it is ZST.
};
($first_arg:ident $(,$rest:ident)*) => {
unsafe impl <$first_arg: IsZero, $($rest: IsZero,)*> IsZero for ($first_arg, $($rest,)*){
#[inline]
fn is_zero(&self) -> bool{
// Destructure tuple to N references
// Rust allows to hide generic params by local variable names.
#[allow(non_snake_case)]
let ($first_arg, $($rest,)*) = self;
$first_arg.is_zero()
$( && $rest.is_zero() )*
}
}
impl_is_zero_tuples!($($rest),*);
}
}
impl_is_zero_tuples!(A, B, C, D, E, F, G, H);
// `Option<&T>` and `Option<Box<T>>` are guaranteed to represent `None` as null.
// For fat pointers, the bytes that would be the pointer metadata in the `Some`
// variant are padding in the `None` variant, so ignoring them and
// zero-initializing instead is ok.
// `Option<&mut T>` never implements `Clone`, so there's no need for an impl of
// `SpecFromElem`.
unsafe impl<T: ?Sized> IsZero for Option<&T> {
#[inline]
fn is_zero(&self) -> bool {
self.is_none()
}
}
unsafe impl<T: ?Sized> IsZero for Option<Box<T>> {
#[inline]
fn is_zero(&self) -> bool {
self.is_none()
}
}
// `Option<NonZero<u32>>` and similar have a representation guarantee that
// they're the same size as the corresponding `u32` type, as well as a guarantee
// that transmuting between `NonZero<u32>` and `Option<NonZero<u32>>` works.
// While the documentation officially makes it UB to transmute from `None`,
// we're the standard library so we can make extra inferences, and we know that
// the only niche available to represent `None` is the one that's all zeros.
macro_rules! impl_is_zero_option_of_nonzero_int {
($($t:ty),+ $(,)?) => {$(
unsafe impl IsZero for Option<NonZero<$t>> {
#[inline]
fn is_zero(&self) -> bool {
self.is_none()
}
}
)+};
}
impl_is_zero_option_of_nonzero_int!(u8, u16, u32, u64, u128, usize, i8, i16, i32, i64, i128, isize);
macro_rules! impl_is_zero_option_of_int {
($($t:ty),+ $(,)?) => {$(
unsafe impl IsZero for Option<$t> {
#[inline]
fn is_zero(&self) -> bool {
const {
let none: Self = unsafe { core::mem::MaybeUninit::zeroed().assume_init() };
assert!(none.is_none());
}
self.is_none()
}
}
)+};
}
impl_is_zero_option_of_int!(u8, u16, u32, u64, u128, i8, i16, i32, i64, i128, usize, isize);
unsafe impl<T: IsZero> IsZero for Wrapping<T> {
#[inline]
fn is_zero(&self) -> bool {
self.0.is_zero()
}
}
unsafe impl<T: IsZero> IsZero for Saturating<T> {
#[inline]
fn is_zero(&self) -> bool {
self.0.is_zero()
}
}
macro_rules! impl_is_zero_option_of_bool {
($($t:ty),+ $(,)?) => {$(
unsafe impl IsZero for $t {
#[inline]
fn is_zero(&self) -> bool {
// SAFETY: This is *not* a stable layout guarantee, but
// inside `core` we're allowed to rely on the current rustc
// behaviour that options of bools will be one byte with
// no padding, so long as they're nested less than 254 deep.
let raw: u8 = unsafe { core::mem::transmute(*self) };
raw == 0
}
}
)+};
}
impl_is_zero_option_of_bool! {
Option<bool>,
Option<Option<bool>>,
Option<Option<Option<bool>>>,
// Could go further, but not worth the metadata overhead.
}