1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
pub fn hashmap_random_keys() -> (u64, u64) {
const KEY_LEN: usize = core::mem::size_of::<u64>();
let mut v = [0u8; KEY_LEN * 2];
imp::fill_bytes(&mut v);
let key1 = v[0..KEY_LEN].try_into().unwrap();
let key2 = v[KEY_LEN..].try_into().unwrap();
(u64::from_ne_bytes(key1), u64::from_ne_bytes(key2))
}
#[cfg(all(
unix,
not(target_os = "macos"),
not(target_os = "ios"),
not(target_os = "tvos"),
not(target_os = "watchos"),
not(target_os = "openbsd"),
not(target_os = "netbsd"),
not(target_os = "fuchsia"),
not(target_os = "redox"),
not(target_os = "vxworks"),
not(target_os = "emscripten"),
not(target_os = "vita"),
))]
mod imp {
use crate::fs::File;
use crate::io::Read;
#[cfg(any(target_os = "linux", target_os = "android"))]
use crate::sys::weak::syscall;
#[cfg(any(target_os = "linux", target_os = "android"))]
fn getrandom(buf: &mut [u8]) -> libc::ssize_t {
use crate::sync::atomic::{AtomicBool, Ordering};
use crate::sys::os::errno;
// A weak symbol allows interposition, e.g. for perf measurements that want to
// disable randomness for consistency. Otherwise, we'll try a raw syscall.
// (`getrandom` was added in glibc 2.25, musl 1.1.20, android API level 28)
syscall! {
fn getrandom(
buffer: *mut libc::c_void,
length: libc::size_t,
flags: libc::c_uint
) -> libc::ssize_t
}
// This provides the best quality random numbers available at the given moment
// without ever blocking, and is preferable to falling back to /dev/urandom.
static GRND_INSECURE_AVAILABLE: AtomicBool = AtomicBool::new(true);
if GRND_INSECURE_AVAILABLE.load(Ordering::Relaxed) {
let ret = unsafe { getrandom(buf.as_mut_ptr().cast(), buf.len(), libc::GRND_INSECURE) };
if ret == -1 && errno() as libc::c_int == libc::EINVAL {
GRND_INSECURE_AVAILABLE.store(false, Ordering::Relaxed);
} else {
return ret;
}
}
unsafe { getrandom(buf.as_mut_ptr().cast(), buf.len(), libc::GRND_NONBLOCK) }
}
#[cfg(any(
target_os = "espidf",
target_os = "horizon",
target_os = "freebsd",
target_os = "dragonfly",
netbsd10
))]
fn getrandom(buf: &mut [u8]) -> libc::ssize_t {
unsafe { libc::getrandom(buf.as_mut_ptr().cast(), buf.len(), 0) }
}
#[cfg(not(any(
target_os = "linux",
target_os = "android",
target_os = "espidf",
target_os = "horizon",
target_os = "freebsd",
target_os = "dragonfly",
netbsd10
)))]
fn getrandom_fill_bytes(_buf: &mut [u8]) -> bool {
false
}
#[cfg(any(
target_os = "linux",
target_os = "android",
target_os = "espidf",
target_os = "horizon",
target_os = "freebsd",
target_os = "dragonfly",
netbsd10
))]
fn getrandom_fill_bytes(v: &mut [u8]) -> bool {
use crate::sync::atomic::{AtomicBool, Ordering};
use crate::sys::os::errno;
static GETRANDOM_UNAVAILABLE: AtomicBool = AtomicBool::new(false);
if GETRANDOM_UNAVAILABLE.load(Ordering::Relaxed) {
return false;
}
let mut read = 0;
while read < v.len() {
let result = getrandom(&mut v[read..]);
if result == -1 {
let err = errno() as libc::c_int;
if err == libc::EINTR {
continue;
} else if err == libc::ENOSYS || err == libc::EPERM {
// Fall back to reading /dev/urandom if `getrandom` is not
// supported on the current kernel.
//
// Also fall back in case it is disabled by something like
// seccomp or inside of docker.
//
// If the `getrandom` syscall is not implemented in the current kernel version it should return an
// `ENOSYS` error. Docker also blocks the whole syscall inside unprivileged containers, and
// returns `EPERM` (instead of `ENOSYS`) when a program tries to invoke the syscall. Because of
// that we need to check for *both* `ENOSYS` and `EPERM`.
//
// Note that Docker's behavior is breaking other projects (notably glibc), so they're planning
// to update their filtering to return `ENOSYS` in a future release:
//
// https://github.com/moby/moby/issues/42680
//
GETRANDOM_UNAVAILABLE.store(true, Ordering::Relaxed);
return false;
} else if err == libc::EAGAIN {
return false;
} else {
panic!("unexpected getrandom error: {err}");
}
} else {
read += result as usize;
}
}
true
}
pub fn fill_bytes(v: &mut [u8]) {
// getrandom_fill_bytes here can fail if getrandom() returns EAGAIN,
// meaning it would have blocked because the non-blocking pool (urandom)
// has not initialized in the kernel yet due to a lack of entropy. The
// fallback we do here is to avoid blocking applications which could
// depend on this call without ever knowing they do and don't have a
// work around. The PRNG of /dev/urandom will still be used but over a
// possibly predictable entropy pool.
if getrandom_fill_bytes(v) {
return;
}
// getrandom failed because it is permanently or temporarily (because
// of missing entropy) unavailable. Open /dev/urandom, read from it,
// and close it again.
let mut file = File::open("/dev/urandom").expect("failed to open /dev/urandom");
file.read_exact(v).expect("failed to read /dev/urandom")
}
}
#[cfg(target_vendor = "apple")]
mod imp {
use crate::io;
use libc::{c_int, c_void, size_t};
#[inline(always)]
fn random_failure() -> ! {
panic!("unexpected random generation error: {}", io::Error::last_os_error());
}
#[cfg(target_os = "macos")]
fn getentropy_fill_bytes(v: &mut [u8]) {
extern "C" {
fn getentropy(bytes: *mut c_void, count: size_t) -> c_int;
}
// getentropy(2) permits a maximum buffer size of 256 bytes
for s in v.chunks_mut(256) {
let ret = unsafe { getentropy(s.as_mut_ptr().cast(), s.len()) };
if ret == -1 {
random_failure()
}
}
}
#[cfg(not(target_os = "macos"))]
fn ccrandom_fill_bytes(v: &mut [u8]) {
extern "C" {
fn CCRandomGenerateBytes(bytes: *mut c_void, count: size_t) -> c_int;
}
let ret = unsafe { CCRandomGenerateBytes(v.as_mut_ptr().cast(), v.len()) };
if ret == -1 {
random_failure()
}
}
pub fn fill_bytes(v: &mut [u8]) {
// All supported versions of macOS (10.12+) support getentropy.
//
// `getentropy` is measurably faster (via Divan) then the other alternatives so its preferred
// when usable.
#[cfg(target_os = "macos")]
getentropy_fill_bytes(v);
// On Apple platforms, `CCRandomGenerateBytes` and `SecRandomCopyBytes` simply
// call into `CCRandomCopyBytes` with `kCCRandomDefault`. `CCRandomCopyBytes`
// manages a CSPRNG which is seeded from the kernel's CSPRNG and which runs on
// its own thread accessed via GCD. This seems needlessly heavyweight for our purposes
// so we only use it on non-Mac OSes where the better entrypoints are blocked.
//
// `CCRandomGenerateBytes` is used instead of `SecRandomCopyBytes` because the former is accessible
// via `libSystem` (libc) while the other needs to link to `Security.framework`.
//
// Note that while `getentropy` has a available attribute in the macOS headers, the lack
// of a header in the iOS (and others) SDK means that its can cause app store rejections.
// Just use `CCRandomGenerateBytes` instead.
#[cfg(not(target_os = "macos"))]
ccrandom_fill_bytes(v);
}
}
#[cfg(any(target_os = "openbsd", target_os = "emscripten", target_os = "vita"))]
mod imp {
use crate::sys::os::errno;
pub fn fill_bytes(v: &mut [u8]) {
// getentropy(2) permits a maximum buffer size of 256 bytes
for s in v.chunks_mut(256) {
let ret = unsafe { libc::getentropy(s.as_mut_ptr() as *mut libc::c_void, s.len()) };
if ret == -1 {
panic!("unexpected getentropy error: {}", errno());
}
}
}
}
// FIXME: once the 10.x release becomes the minimum, this can be dropped for simplification.
#[cfg(all(target_os = "netbsd", not(netbsd10)))]
mod imp {
use crate::ptr;
pub fn fill_bytes(v: &mut [u8]) {
let mib = [libc::CTL_KERN, libc::KERN_ARND];
// kern.arandom permits a maximum buffer size of 256 bytes
for s in v.chunks_mut(256) {
let mut s_len = s.len();
let ret = unsafe {
libc::sysctl(
mib.as_ptr(),
mib.len() as libc::c_uint,
s.as_mut_ptr() as *mut _,
&mut s_len,
ptr::null(),
0,
)
};
if ret == -1 || s_len != s.len() {
panic!(
"kern.arandom sysctl failed! (returned {}, s.len() {}, oldlenp {})",
ret,
s.len(),
s_len
);
}
}
}
}
#[cfg(target_os = "fuchsia")]
mod imp {
#[link(name = "zircon")]
extern "C" {
fn zx_cprng_draw(buffer: *mut u8, len: usize);
}
pub fn fill_bytes(v: &mut [u8]) {
unsafe { zx_cprng_draw(v.as_mut_ptr(), v.len()) }
}
}
#[cfg(target_os = "redox")]
mod imp {
use crate::fs::File;
use crate::io::Read;
pub fn fill_bytes(v: &mut [u8]) {
// Open rand:, read from it, and close it again.
let mut file = File::open("rand:").expect("failed to open rand:");
file.read_exact(v).expect("failed to read rand:")
}
}
#[cfg(target_os = "vxworks")]
mod imp {
use crate::io;
use core::sync::atomic::{AtomicBool, Ordering::Relaxed};
pub fn fill_bytes(v: &mut [u8]) {
static RNG_INIT: AtomicBool = AtomicBool::new(false);
while !RNG_INIT.load(Relaxed) {
let ret = unsafe { libc::randSecure() };
if ret < 0 {
panic!("couldn't generate random bytes: {}", io::Error::last_os_error());
} else if ret > 0 {
RNG_INIT.store(true, Relaxed);
break;
}
unsafe { libc::usleep(10) };
}
let ret = unsafe {
libc::randABytes(v.as_mut_ptr() as *mut libc::c_uchar, v.len() as libc::c_int)
};
if ret < 0 {
panic!("couldn't generate random bytes: {}", io::Error::last_os_error());
}
}
}