1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
use crate::cell::UnsafeCell;
use crate::ptr;
use crate::sync::atomic::{AtomicPtr, Ordering::Relaxed};
use crate::sys::sync::{mutex, Mutex};
#[cfg(not(target_os = "nto"))]
use crate::sys::time::TIMESPEC_MAX;
#[cfg(target_os = "nto")]
use crate::sys::time::TIMESPEC_MAX_CAPPED;
use crate::sys_common::lazy_box::{LazyBox, LazyInit};
use crate::time::Duration;

struct AllocatedCondvar(UnsafeCell<libc::pthread_cond_t>);

pub struct Condvar {
    inner: LazyBox<AllocatedCondvar>,
    mutex: AtomicPtr<libc::pthread_mutex_t>,
}

#[inline]
fn raw(c: &Condvar) -> *mut libc::pthread_cond_t {
    c.inner.0.get()
}

unsafe impl Send for AllocatedCondvar {}
unsafe impl Sync for AllocatedCondvar {}

impl LazyInit for AllocatedCondvar {
    fn init() -> Box<Self> {
        let condvar = Box::new(AllocatedCondvar(UnsafeCell::new(libc::PTHREAD_COND_INITIALIZER)));

        cfg_if::cfg_if! {
            if #[cfg(any(
                target_os = "macos",
                target_os = "ios",
                target_os = "tvos",
                target_os = "watchos",
                target_os = "l4re",
                target_os = "android",
                target_os = "redox"
            ))] {
                // `pthread_condattr_setclock` is unfortunately not supported on these platforms.
            } else if #[cfg(any(target_os = "espidf", target_os = "horizon"))] {
                // NOTE: ESP-IDF's PTHREAD_COND_INITIALIZER support is not released yet
                // So on that platform, init() should always be called
                // Moreover, that platform does not have pthread_condattr_setclock support,
                // hence that initialization should be skipped as well
                //
                // Similar story for the 3DS (horizon).
                let r = unsafe { libc::pthread_cond_init(condvar.0.get(), crate::ptr::null()) };
                assert_eq!(r, 0);
            } else {
                use crate::mem::MaybeUninit;
                let mut attr = MaybeUninit::<libc::pthread_condattr_t>::uninit();
                let r = unsafe { libc::pthread_condattr_init(attr.as_mut_ptr()) };
                assert_eq!(r, 0);
                let r = unsafe { libc::pthread_condattr_setclock(attr.as_mut_ptr(), libc::CLOCK_MONOTONIC) };
                assert_eq!(r, 0);
                let r = unsafe { libc::pthread_cond_init(condvar.0.get(), attr.as_ptr()) };
                assert_eq!(r, 0);
                let r = unsafe { libc::pthread_condattr_destroy(attr.as_mut_ptr()) };
                assert_eq!(r, 0);
            }
        }

        condvar
    }
}

impl Drop for AllocatedCondvar {
    #[inline]
    fn drop(&mut self) {
        let r = unsafe { libc::pthread_cond_destroy(self.0.get()) };
        if cfg!(target_os = "dragonfly") {
            // On DragonFly pthread_cond_destroy() returns EINVAL if called on
            // a condvar that was just initialized with
            // libc::PTHREAD_COND_INITIALIZER. Once it is used or
            // pthread_cond_init() is called, this behaviour no longer occurs.
            debug_assert!(r == 0 || r == libc::EINVAL);
        } else {
            debug_assert_eq!(r, 0);
        }
    }
}

impl Condvar {
    pub const fn new() -> Condvar {
        Condvar { inner: LazyBox::new(), mutex: AtomicPtr::new(ptr::null_mut()) }
    }

    #[inline]
    fn verify(&self, mutex: *mut libc::pthread_mutex_t) {
        // Relaxed is okay here because we never read through `self.addr`, and only use it to
        // compare addresses.
        match self.mutex.compare_exchange(ptr::null_mut(), mutex, Relaxed, Relaxed) {
            Ok(_) => {}                // Stored the address
            Err(n) if n == mutex => {} // Lost a race to store the same address
            _ => panic!("attempted to use a condition variable with two mutexes"),
        }
    }

    #[inline]
    pub fn notify_one(&self) {
        let r = unsafe { libc::pthread_cond_signal(raw(self)) };
        debug_assert_eq!(r, 0);
    }

    #[inline]
    pub fn notify_all(&self) {
        let r = unsafe { libc::pthread_cond_broadcast(raw(self)) };
        debug_assert_eq!(r, 0);
    }

    #[inline]
    pub unsafe fn wait(&self, mutex: &Mutex) {
        let mutex = mutex::raw(mutex);
        self.verify(mutex);
        let r = libc::pthread_cond_wait(raw(self), mutex);
        debug_assert_eq!(r, 0);
    }

    // This implementation is used on systems that support pthread_condattr_setclock
    // where we configure condition variable to use monotonic clock (instead of
    // default system clock). This approach avoids all problems that result
    // from changes made to the system time.
    #[cfg(not(any(
        target_os = "macos",
        target_os = "ios",
        target_os = "tvos",
        target_os = "watchos",
        target_os = "android",
        target_os = "espidf",
        target_os = "horizon"
    )))]
    pub unsafe fn wait_timeout(&self, mutex: &Mutex, dur: Duration) -> bool {
        use crate::sys::time::Timespec;

        let mutex = mutex::raw(mutex);
        self.verify(mutex);

        #[cfg(not(target_os = "nto"))]
        let timeout = Timespec::now(libc::CLOCK_MONOTONIC)
            .checked_add_duration(&dur)
            .and_then(|t| t.to_timespec())
            .unwrap_or(TIMESPEC_MAX);

        #[cfg(target_os = "nto")]
        let timeout = Timespec::now(libc::CLOCK_MONOTONIC)
            .checked_add_duration(&dur)
            .and_then(|t| t.to_timespec_capped())
            .unwrap_or(TIMESPEC_MAX_CAPPED);

        let r = libc::pthread_cond_timedwait(raw(self), mutex, &timeout);
        assert!(r == libc::ETIMEDOUT || r == 0);
        r == 0
    }

    // This implementation is modeled after libcxx's condition_variable
    // https://github.com/llvm-mirror/libcxx/blob/release_35/src/condition_variable.cpp#L46
    // https://github.com/llvm-mirror/libcxx/blob/release_35/include/__mutex_base#L367
    #[cfg(any(
        target_os = "macos",
        target_os = "ios",
        target_os = "tvos",
        target_os = "watchos",
        target_os = "android",
        target_os = "espidf",
        target_os = "horizon"
    ))]
    pub unsafe fn wait_timeout(&self, mutex: &Mutex, dur: Duration) -> bool {
        use crate::sys::time::SystemTime;
        use crate::time::Instant;

        let mutex = mutex::raw(mutex);
        self.verify(mutex);

        // OSX implementation of `pthread_cond_timedwait` is buggy
        // with super long durations. When duration is greater than
        // 0x100_0000_0000_0000 seconds, `pthread_cond_timedwait`
        // in macOS Sierra returns error 316.
        //
        // This program demonstrates the issue:
        // https://gist.github.com/stepancheg/198db4623a20aad2ad7cddb8fda4a63c
        //
        // To work around this issue, and possible bugs of other OSes, timeout
        // is clamped to 1000 years, which is allowable per the API of `wait_timeout`
        // because of spurious wakeups.
        let dur = Duration::min(dur, Duration::from_secs(1000 * 365 * 86400));

        // pthread_cond_timedwait uses system time, but we want to report timeout
        // based on stable time.
        let now = Instant::now();

        let timeout = SystemTime::now()
            .t
            .checked_add_duration(&dur)
            .and_then(|t| t.to_timespec())
            .unwrap_or(TIMESPEC_MAX);

        let r = libc::pthread_cond_timedwait(raw(self), mutex, &timeout);
        debug_assert!(r == libc::ETIMEDOUT || r == 0);

        // ETIMEDOUT is not a totally reliable method of determining timeout due
        // to clock shifts, so do the check ourselves
        now.elapsed() < dur
    }
}